TAPERING OF ANTENNA ARRAY FOR EFFICIENT RADIATION PATTERN

M.Venkata Subbarao¹, N.Sayedu.Khasim², Jagadeesh Thati³ and M.H.H.Sastry⁴

¹. Asst. Professor, Department of ECE, Tirumala Engineering College, Narasaraopeta, Guntur, A.P-522601 email: mandava.ece@gmail.com
². Asst. Professor, Department of ECE, Tirumala Engineering College, Narasaraopeta, Guntur, A.P-522601 email: sayedukhasim@gmail.com
³. Sr. Asst. Professor, Department of ECE, Tirumala Engineering College, Narasaraopeta, Guntur, A.P-522601 email: jagadeeshthati@gmail.com

Abstract

Array antennas offer a wide range of opportunities in the variation of their directivity patterns through amplitude and phase control. Peak side lobe levels may be reduced via amplitude control or weighting across the array aperture. Several authors have made significant contributions in detailing processes for synthesizing these aperture amplitude distributions for the purpose of side lobe level control. One of the basic trade-offs when implementing amplitude weighting functions is that a trade between low side lobe levels and a loss in main beam directivity always results. In this paper we are implemented and compare the binomial array and Dolph-Tchebyscheff array antenna. Descriptions of the amplitude tapers and their utility will be presented.

Keywords: Tapering, Binomial array, Dolph-Tchebyscheff array, Side lobe level.

1. Introduction

Through the use of individual amplitude and phase control, array antennas offer a wide range of directivity pattern shape implementations to the antenna designer. High directivity antennas have defined main beams whose widths are inversely proportional to their aperture extents. High directivity antennas also have side lobes, which are often undesirable as they may permit reception of energy from undesired directions. The energy from the undesired directions may contain interfering sources such as multipath or even deliberate jammers.

Techniques for reducing the levels of the peak side lobes (those near the main lobe) are well understood. Near-in side lobes may be reduced relative to the peak of the main beam by simply tailoring the amplitude distribution across the array aperture. The amplitude distribution is often referred to as the amplitude weighting. The following section will present a review of techniques for synthesizing amplitude weighting functions to achieve varied levels of side lobe reduction. Use of these amplitude weighting functions have a well known effect on the peak of the main beam of the directivity pattern. The amplitude tapering for side lobe reduction reduces the spatial efficiency (or aperture efficiency) of the antenna. Along with the reduction of peak directivity, amplitude tapering also results in a broadening of the main beam. Although not the focus of this discussion, the resultant change in beam width should be taken into consideration in the design process. While reduced side lobes are usually desirable, reduced peak directivity is usually not, therefore an accurate understanding of the aperture efficiency is a valuable design tool.
2. UNIFORM AMPLITUDE WEIGHTING FUNCTIONS

Equal illumination at every element in an array, referred to as uniform illumination as shown in Figure 1, results in directivity patterns with three distinct features. Firstly, uniform illumination gives the highest aperture efficiency possible of 100% or 0 dB, for any given aperture area. Secondly, the first side lobes for a linear/rectangular aperture have peaks of approximately –13.1 dB relative to the main beam peak; and the first side lobes for a circular aperture have peaks of approximately –17.6 dB relative to the main beam peak. Thirdly, uniform weighting results in a directivity pattern with the familiar sinc(x) or $\sin(x)/x$ where $x=\sin(\theta)$ angular distribution, as shown in Figure 2.

![Figure 1: Linear array with n isotropic point sources with equal amplitude and spicing.](image)

![Figure 2: Radiation pattern for linear array with n isotropic point sources with equal amplitude and spicing](image)

3. NON-UNIFORM AMPLITUDE WEIGHTING FUNCTIONS

3.1 Binomial Arrays:
So far, the discussion was limited to the linear arrays of n isotropic sources of equal amplitude but arrays of non-uniform amplitudes are also possible and binomial array is one of them. In this, the amplitudes of the radiating sources are arranged according to the coefficient of successive terms of the following binomial series and hence the name.

$$(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$$

Where $n = \text{number of radiating sources in the array}$
Here the secondary or side lobes in the linear broadside arrays are to be eliminated then the radiating sources must have current amplitudes proportional to the coefficient of the above binomial series.

This work can be accomplished by arranging the arrays in such a way that radiating sources in the centre of the broadside array radiated more strongly than the radiating sources at the edges. The secondary lobes can be eliminated entirely, if the following two conditions are satisfied.

(i) Spacing between the two consecutive radiating sources does not exceed $\lambda/2$, and

(ii) The current amplitudes in radiating sources (from outer, towards center source) are proportional to the coefficients of the successive terms of the binomial series.

These two conditions are necessarily satisfied in binomial arrays and the coefficients which correspond to amplitudes of the sources are obtained by substitute $n = 1, 2, \ldots$.

In the eqn. (1), for example, relative amplitudes for the arrays of 1 to 5 radiating sources are as follows:

<table>
<thead>
<tr>
<th>No. Of Sources</th>
<th>Relative amplitudes</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 1</td>
<td>1</td>
</tr>
<tr>
<td>n = 2</td>
<td>1, 1</td>
</tr>
<tr>
<td>n = 3</td>
<td>1, 2, 1</td>
</tr>
<tr>
<td>n = 4</td>
<td>1, 3, 3, 1</td>
</tr>
<tr>
<td>n = 5</td>
<td>1, 4, 6, 4, 1 etc</td>
</tr>
</tbody>
</table>

3.2 Dolph- Tchebyscheff or Chebyshev Arrays:

In defining the Tchebyscheff polynomial the first latter T is used as a symbol, as Tschebyscheff being the older spelling. The Tschebyscheff polynomial is defined by eqn.

$$T_m(x) = \cos (m \cos^{-1} x) \quad \text{for} \quad x \leq \pm 1$$

And

$$T_m(x) = \cosh (m \cosh^{-1} x) \quad \text{If} \quad x \geq \pm 1$$

Where m is order of polynomial. For higher terms can be had from the recursion formula

$$T_{m+1} (x) = 2 \times T_m (x) - T_{m-1} (x)$$

Steps to be followed while calculating Dolph- Tchebyscheff amplitude distribution

Step 1:

Side lobe level below main lobe maximum in db=$20\log_{10} r$

Where r = Main lobe maximum/side lobe level

Step 2:

Now select the Tchebyscheff polynomial $T_m(x)$ of the same degree as array polynomial. For, if m be the degree of Tchebyscheff polynomial then the degree of array polynomial would be $(n-1)$, where n is number of antennas. Symbolically therefore

$$T_m(x_0) = T_{n-1}(x_0)$$

After having known the values of $T_m(x_0)$ and r, equate them and solve the equation

$$T_m(x_0) = T_{n-1}(x_0) = r, \text{ for } x_0$$

http://e-jst.teiath.gr
Step 3:
Choose array polynomial E as n is even

$$E = \sum_{k=0}^{n-1} a_k \cos \left((2k+1)\psi \right) / 2$$

If n is odd

$$E = \sum_{k=0}^{n} a_k \cos \left(2k\psi / 2 \right)$$

Where $\psi = (\beta \cos \theta + \alpha)$ radian.

Step 4:
Finally, equate array polynomial E and Tchebyscheff polynomial i.e.

$$E = T_{n-1}(x)$$

By solving the above equation the coefficient a_0, a_1, a_2,... etc are calculated which gives Dolph-Tchebyscheff optimum distribution for the specified side lobe level.

4. RESULTS

In this paper we simulated antenna radiation patterns and observe the side lobe variations in uniform amplitude distribution for linear arrays and non uniform amplitude distribution for both Binomials, Chebyshev Arrays.

![Figure 3.(a) Linear Arrays radiation pattern for n=3, (b) Linear Arrays radiation pattern for n=6, (c) Linear Arrays radiation pattern for n=9](image)

First we are increasing the n values, observe the radiation pattern and number of side lobes for uniform amplitude distribution as shown in Figures 3.(a),(b),(c). As for observation number of antennas n increasing the number of side lobes are also increasing. This is undesired.

In order to reduce the side lobes we are implemented another method is non uniform amplitude distribution. In binomial array we observed as n values are increasing number of side lobes are decreasing but beam width is increasing with the cost of directivity. In binomial array main drawback is as n increasing, directivity is decreases as shown in Figures 4(a),(b),(c).
We are considered side lobe level ratio is -19.1db and implemented chebyshev arrays as n increasing corresponding beamwidth decreasing as shown in Figures 5(a),(b),(c).

Figure: 4(a) Binomial array radiation pattern for n=3, (b) Binomial array radiation pattern for n=6, (c) Binomial array radiation pattern for n=9

Figure:5 (a)Chebyshev Arrays radiation pattern for n=3, (b) Chebyshev Arrays radiation pattern for n=6, (c) Chebyshev Arrays radiation pattern for n=9

5. Conclusion

By using Uniform arrays we get the desired radiation pattern by changing the phase, but we get the side lobes due to equal amplitudes. Where as in case of Binomial arrays, we can reduce or eliminate minor lobes by giving non uniform amplitudes to radiating sources but it leads to cost of directivity. Dolph – Tschebyshev array provides optimum beam width for a specified side lobe level but, it is efficient for limited number of elements only.

References