UNIFORM LOWER TRIANGULAR MATRIX SUMMABILITY OF A FOURIER SERIES

RAMASHRAY SINGH YADAV

Department of Mathematics Harcourt Butler Technological Institute, Kanpur-208002, U.P. (INDIA) E-mail- singh.1344@rediffmail.com

Abstract. In this paper, the concept of uniform triangular matrix summability has been introduced and a new theorem on uniform lower triangular matrix summability has been established so that this theorem generalizes all the works of this direction.

2007 Mathematics Subject Classification. 42B05, 42B08.

Keywords and phrases. Uniform lower triangular matrix summability, Fourier series, Fourier coefficients, Harmonic summability, Nörlund summability.

1. DEFINITIONS AND NOTATIONS

Let f(x) be a periodic function with period 2π and integrable in the sense of Lebesgue over the interval $[-\pi,\pi]$. The Fourier series associated with this function is

$$f(x) \approx \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
(1.1)

where a_0, a_n, b_n are known as Fourier trigonometric coefficients of f(x) and are given by :

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$n = 1, 2, 3.... (1.2)$$

Let $\sum_{n=0}^{\infty} u_n(x)$ be an infinite series defined in $[a,b] \subset [-\pi,\pi]$. The n^{th} partial

sum of the series $\sum_{n=0}^{\infty} u_n(x)$ is given by $S_n(x) = \sum_{\nu=0}^n u_{\nu}(x) \quad \forall x \in [a,b].$

Let $T = (a_{n,k})$ be an infinite lower triangular matrix satisfying Silverman-Töeplitz [6] conditions of regularity i.e.

(i)
$$\sum_{k=0}^{n} a_{n,k} \to 1$$
 as $n \to \infty$
(ii) $a_{n,k} = 0$ for $k > n$
and (iii) $\sum_{k=0}^{n} |a_{n,k}| \leq M$ where *M* is finite constant.

If there exists a bounded function S(x) such that

$$t_n(x) = \sum_{k=0}^n a_{n,k} \left\{ S_k(x) - S(x) \right\}$$
$$= o(1) \quad as \quad n \to \infty$$

uniformly $\forall x \in [a,b]$ then we say that the series $\sum_{n=0}^{\infty} u_n(x)$ is summable (T) uniformly in $a \le x \le b$ to the sum S(x).

Particular Cases. The important particular cases of the triangular matrix means are:

(*i*) Cesàro mean of order 1 or (*C*, 1) mean if $a_{n,k} = \frac{1}{n+1} \forall k$.

(*ii*) Harmonic means when
$$a_{n,k} = \frac{1}{(n-k+1)\log n}$$
.
(*iii*)(C, δ) means when $a_{n,k} = \frac{\begin{pmatrix} n-k+\delta-1\\ \delta-1 \end{pmatrix}}{\begin{pmatrix} n+\delta\\ \delta \end{pmatrix}}$.
(*iv*)(H, p) means when $a_{n,k} = \frac{1}{(\log)^{p-1}(n+1)}\prod_{q=0}^{p-1}\log^q(k+1)$.

(v) Nörlund means [1919] when $a_{n,k} = \frac{p_{n-k}}{P_n}$ where $P_n = \sum_{k=0}^{\infty} p_k$, $P_n \neq 0$.

(vi) Riesz means (\overline{N}, p_n) when $a_{n,k} = \frac{p_k}{P_n}, P_n \neq 0$.

(*vii*)Generalised Nörlund Means (*N*, *p*, *q*) when $a_{n,k} = \frac{p_{n-k}q_k}{R}$.

where
$$R_n = \sum_{k=0}^{\infty} p_k q_{n-k}$$
, $R_n \neq 0$.
write $\phi(t) = f(x+t) + f(x-t) - 2S(x)$, (1.3)

We

10

$$\Phi(t) = \int_{0}^{t} |\phi(u)| du$$
(1.4)

$$A_{n,\tau} = \sum_{k=0}^{\tau} a_{n,n-\tau} = \sum_{k=n-\tau}^{n} a_{n,k} , \qquad (1.5)$$

where
$$\tau = \left[\frac{1}{t}\right] = \text{ integral part of } \frac{1}{t},$$
 (1.6)
and $K_n(t) = \frac{1}{2\pi} \sum_{k=0}^n a_{n,k} \frac{\sin(k+\frac{1}{2})t}{\sin\frac{t}{2}}.$ (1.7)

2. INTRODUCTION

Siddiqi [5] proved the following theorem:

TheoremA. If

$$\Phi(t) = O\left[\frac{t}{\log(\frac{1}{t})}\right]$$
(2.1)

as $t \rightarrow +0$, then the series (1.1), at t = x is summable (*H*) to f(x).

Singh [8] generalized the above theorem for (N, p_n) summability in the following form:

TheoremB. Under the condition (2.1), the Fourier series of f(t), at t = x, is summable (N, p_n) to f(x), where $\{p_n\}$ is non-negative, non-increasing sequence such that

$$\sum_{k=\alpha}^n \frac{P_k}{k\log k} = O(P_n),$$

where $\alpha > 1$ is a fixed positive integer.

Continuing the study for (N, p_n) summability, Pati [7] has proved the following therem:

TheoremC. If (N, p_n) be a regular Nörlund method, defined by a real, non-negative, monotonic, non-increasing sequence of the coefficient $\{p_n\}$ such that $P_n \to \infty$, and $\log n = O(P_n)$ as $n \to \infty$ then if

$$\Phi(t) = \int_{0}^{t} \phi(t) dt = o\left[\frac{t}{P_{\tau}}\right]$$
(2.2)

as $t \to +0$, the Fourier series of f(t), at t = x is summable (N, p_n) to f(x).

Dealing with uniform summability method, Saxena [2] established the following theorem:

TheoremD: If

$$\Phi(t) = O\left[\frac{t}{\log(\frac{1}{t})}\right],$$

uniformly in a set E in which S = S(x) is bounded, as $t \to +0$, then the series (1.1) is summable by Harmonic means uniformly in E to the sum S.

Saxena [3] generalizes above theorem for uniform Nörlund summability method in the following form:

TheoremE: If $\alpha(t)$ stands for a function of t and $\alpha(t)$ ultimately increase steadily

with
$$t$$
,

$$\int_{\frac{1}{n}}^{\delta} \frac{P_{\tau}}{\alpha(P_{\tau})} \cdot \frac{1}{t} dt = O(P_n), \text{ as } n \to \infty, \qquad (2.3)$$

and

$$\Phi(t) = o\left(\frac{t}{\alpha(P_{\tau})}\right), \qquad (2.4)$$

uniformly in E in which S = S(x) is bounded, as $t \to +0$, then the series (1.1) is summable (N, p_n) uniformly in E to the sum S.

3. MAIN THEOREM.

Quite a good amount of works are known for uniform harmonic as well as Nörlund summability of Fourier series. In this paper, a more general result than those of Siddiqi [5], Saxena [2, 3], Pati [7], and Singh [8] has been established so that their results come out as particular cases.

Theorem. Let $T = (a_{n,k})$ be an infinite triangular matrix such that the elements $(a_{n,k})$ are non-negative and non-decreasing with $k \le n$ such that $A_{n,\tau} = \sum_{k=0}^{\tau} a_{n,n-\tau} = \sum_{k=n-\tau}^{n} a_{n,k}$, $A_{n,n} = 1 \forall n$. If $\int_{0}^{t} |\phi(u)| du = o\left(\frac{t}{\xi(\frac{1}{t})\log(\frac{1}{t})}\right),$ (3.1)

uniformly in a set E = [a,b] in which S(x) is bounded, as $t \to +0$, where $\xi(t)$ is a positive, monotonic increasing function of t such that

$$\int_{\frac{1}{5}}^{n} \frac{A_{n,u} du}{u\xi(u)\log u} = O(1), \qquad (3.2)$$

as $n \to \infty$, for $0 < \delta < 1$, then the Fourier series (1.1) is lower matrix summable (*T*) uniformly in E = [a,b] to the sum *S*(*x*).

4. LEMMAS.

We shall require the following lemmas for the proof of our theorem-**Lemma4.1.** Let $K_n(t)$ be given by (1.7) then $K_n(t) = O(n), 0 < t \le \frac{1}{n}$.

Proof:
$$K_n(t) = \frac{1}{2\pi} \sum_{k=0}^n a_{n,k} \frac{\sin(k + \frac{1}{2})t}{\sin \frac{t}{2}}$$

 $|K_n(t)| = \frac{1}{2\pi} \left| \sum_{k=0}^n a_{n,k} \frac{\sin(k + \frac{1}{2})t}{\sin \frac{t}{2}} \right|$
 $\leq \frac{1}{2\pi} \sum_{k=0}^n |a_{n,k}| \cdot \left| \frac{\sin(2k+1)\frac{t}{2}}{\sin \frac{t}{2}} \right|$
 $\leq \frac{1}{2\pi} \sum_{k=0}^n |a_{n,k}| \cdot \frac{(2k+1)|\sin \frac{t}{2}|}{|\sin \frac{t}{2}|}$
 $\leq \frac{(2n+1)}{2\pi} \sum_{k=0}^n |a_{n,k}|$
 $\leq \frac{(n+1)}{\pi} M$ by Töeplitz [6] condition of regularity
 $= O(n)$.

Lemma.4.2. If $a_{n,k}$ is a non-negative and non-decreasing with k, then

$$\begin{aligned} \left| \sum_{k=0}^{n} a_{n,k} \sin(k+\frac{1}{2})t \right| &= O(A_{n,\tau}) \quad \text{for} \quad 0 < \frac{1}{n} \le t < \delta < \pi \; . \end{aligned}$$

$$\begin{aligned} \mathbf{Proof:} \; \left| \sum_{k=0}^{n} a_{n,k} \sin(k+\frac{1}{2})t \right| &\le \left| \sum_{k=0}^{n-\tau} a_{n,k} \sin(k+\frac{1}{2})t \right| + \left| \sum_{k=n-\tau}^{n} a_{n,k} \sin(k+\frac{1}{2})t \right| \\ &\le 2a_{n,n-\tau} \max_{0 \le k \le r \le n-\tau} \left| \sum_{k=0}^{r} \sin(k+\frac{1}{2})t \right| + \sum_{k=n-\tau}^{n} a_{n,k} \left| \sin(k+\frac{1}{2})t \right|, \end{aligned}$$

$$\leq 2a_{n,n-\tau} \left| \frac{\sin^2(r+1)\frac{t}{2}}{\sin\frac{t}{2}} \right| + A_{n,\tau}$$

$$\left| \sum_{k=0}^n a_{n,k} \sin(k+\frac{1}{2})t \right| \leq \frac{2a_{n,n-\tau}}{t} + A_{n,\tau}$$

$$A_{n,\tau} = \sum_{k=0}^{\tau} a_{n,n-k} = \sum_{k=0}^n a_{n,k}$$
(4.1)

Now

$$\begin{aligned} \left| n\left(k + \frac{1}{2}\right)t \right| &\leq \frac{1}{t} + A_{n,\tau} \\ a_{n,\tau} &= \sum_{k=0}^{\tau} a_{n,n-k} = \sum_{k=n-\tau}^{n} a_{n,k} \\ &= a_{n,n-\tau} + a_{n,n-\tau+1} + \dots + a_{n,n} \\ &\geq (\tau+1)a_{n,n-\tau} \\ &\geq \frac{a_{n,n-\tau}}{t} \qquad (\text{ since } \tau = \left[\frac{1}{t}\right]). \end{aligned}$$

Therefore $\frac{a_{n,n-\tau}}{t} = O(A_{n,\tau}).$ (4.2) By (4.1) and (4.2), we have $\left|\sum_{k=0}^{n} a_{n,k} \sin(k+\frac{1}{2})t\right| = O(A_{n,\tau}).$ Lemma.4.3. If $a_{n,k}$ is non-negative and non-decreasing with $k \le n$ and $K_n(t)$ is given by (1.7) then $K_n(t) = O\left(\frac{A_{n,\tau}}{t}\right)$ for $0 < \frac{1}{n} \le t < \delta < \pi$. Proof: Since for $0 < \frac{1}{n} \le t < \delta < \pi$, $\sin t \ge \frac{t}{\pi}$, We have $|K_n(t)| = \frac{1}{2\pi} \left|\sum_{k=0}^{n} a_{n,k} \frac{\sin(k+\frac{1}{2})t}{\sin \frac{t}{2}}\right|$ $\le \frac{1}{2\pi} \cdot \frac{2\pi}{t} \left[O(A_{n,\tau})\right]$ from lemma (4.2) $|K_n(t)| = O\left(\frac{A_{n,\tau}}{t}\right).$

Hence the lemma is proved.

5. PROOF OF THE MAIN THEOREM.

Following Titchmarsh [4], we have -

$$S_{k}(x) - f(x) = \frac{1}{2\pi} \int_{0}^{\pi} \frac{\sin(k + \frac{1}{2})t}{\sin\frac{t}{2}} .\phi(t)dt \text{ uniformly in } a \le x \le b.$$

Then $t_{n}(x) = \sum_{k=0}^{n} a_{n,k} \{S_{k}(x) - f(x)\}$
 $= \frac{1}{2\pi} \int_{0}^{\pi} \left(\sum_{k=0}^{n} a_{n,k} . \frac{\sin(k + \frac{1}{2})t}{\sin\frac{t}{2}} \right) .\phi(t)dt$
 $= \int_{0}^{\pi} K_{n}(t) .\phi(t)dt$
 $= \int_{0}^{\frac{1}{n}} K_{n}(t) .\phi(t)dt + \int_{\frac{1}{n}}^{\delta} K_{n}(t) .\phi(t)dt + \int_{\delta}^{\pi} K_{n}(t) .\phi(t)dt$
 $= I_{1} + I_{2} + I_{3}$ uniformly in $a \le x \le b$.

By Riemann Lebesgue theorem and regularity conditions we get $I_3 = o(1)$.

And now
$$I_1 = \int_0^{\frac{1}{n}} K_n(t) \cdot \phi(t) dt$$

$$\leq \int_0^{\frac{1}{n}} |K_n(t)| |\phi(t)| dt$$

$$= O(n) \cdot \int_0^{\frac{1}{n}} |\phi(t)| dt \quad \text{by lemma (4.1)}$$

$$= O(n) \cdot d\left(\frac{1}{n\xi(n)\log n}\right), \text{ by condition (3.1).}$$

$$= o\left(\frac{1}{\xi(n)\log n}\right)$$

$$= o(1) \text{ as } n \to \infty.$$
Now $I_2 = \int_0^{s} K_n(t) \cdot \phi(t) dt$,

$$|I_2| \leq \int_0^{\frac{1}{n}} |K_n(t)| |\phi(t)| dt$$

$$= O(1) \cdot \int_0^{s} \left(\frac{A_{n,\tau}}{t} \cdot \Phi(t)\right)_{\frac{1}{n}}^{s} - \int_{\frac{s}{n}}^{s} \frac{d}{dt} \left(\frac{A_{n,\tau}}{t}\right) \Phi(t) dt$$

$$= O(1) \left[\left[\frac{A_{n,\tau}}{t} \cdot \Phi(t)\right]_{\frac{1}{n}}^{s} - \int_{\frac{s}{n}}^{s} \frac{d}{dt} \left(\frac{A_{n,\tau}}{t}\right) \Phi(t) dt\right]$$

$$\leq O(1) \left[\left[\frac{A_{n,\tau}}{t} \cdot o\left(\frac{t}{\xi(\frac{1}{\tau})\log(\frac{1}{\tau})}\right)\right]_{\frac{1}{n}}^{s} + \int_{\frac{s}{n}}^{s} \frac{A_{n,\tau}dt}{t^{\frac{1}{2}}(\frac{1}{\tau})\log(\frac{1}{\tau})} + \int_{\frac{s}{n}}^{s} \frac{1}{\xi(\frac{1}{\tau})\log(\frac{1}{\tau})} dt\right]$$

$$\leq o(1) \left[\frac{A_{n,\tau}[\frac{1}{n}]}{\xi(\frac{1}{\tau})\log(\frac{1}{\tau})} + \frac{A_{n,n}}{\xi(n)\log n} + \int_{\frac{s}{n}}^{s} \frac{A_{n,\tau}dt}{t^{\frac{1}{2}}(\frac{1}{\tau})\log(\frac{1}{\tau})} + \int_{\frac{s}{n}}^{s} \frac{1}{t^{\frac{1}{2}}(\frac{1}{\tau})\log(\frac{1}{\tau})} dt\right]$$

$$= o(1) + o(1) \cdot \int_{\frac{s}{n}}^{s} \frac{A_{n,\tau}dt}{t^{\frac{1}{2}}(\frac{1}{\tau})\log(\frac{1}{\tau})} + o(1) \cdot \int_{\frac{1}{s}}^{s} \frac{d(A_{n,n})}{\xi(u)\log u}$$

$$= o(1) + o(1) \cdot \int_{\frac{1}{n}}^{u} \frac{A_{n,n}du}{t^{\frac{1}{2}}(\frac{1}{\tau})\log(\frac{1}{\tau})} + o(1) \cdot \int_{\frac{1}{s}}^{n} \frac{d(A_{n,n})}{\xi(u)\log u}$$

$$= o(1) + o(1) \cdot \int_{\frac{1}{n}}^{u} \frac{A_{n,n}du}{t^{\frac{1}{2}}(\frac{1}{\tau})\log(\frac{1}{\tau})} + o(1) \cdot \int_{\frac{1}{s}}^{n} \frac{d(A_{n,n})}{\xi(u)\log u}$$

by mean value theorem for integrals

= o(1) as $n \rightarrow \infty$, by condition (3.2)

which completes the proof of the main theorem.

Particular cases.(a) If
$$a_{n,k} = \frac{1}{(n-k+1)\log n}$$
, $\xi(t) = 1 \quad \forall t, [a,b] = \{x\}$ then the

result of Siddiqi [5] becomes a particular case of our theorem.

(**b**) The result of Singh[8] is a particular case of our theorem if
$$a_{n,k} = \frac{p_{n-k}}{P_n}, P_n = \sum_{k=0}^n p_k$$
 and $[a,b] = \{x\}, \xi(t) = 1 \forall t$

(c) If $a_{n,k}$ is defined as in case (b), $[a,b] = \{x\}$ and $\xi(t) = \frac{P_{[t]}}{\log t}$ then our theorem

reduces to theoremC by Pati [7].

(d) If $a_{n,k}$ and $\xi(t)$ is defined as in case (a) and [a,b] = set E, then the result of Saxena [2] is a particular case of our theorem. The condition of Saxena [2] is analogous to the result of Siddiqi [5].

(e) If $a_{n,k}$ is defined as in case (b) and $\xi(t) = \frac{\alpha(P_{[t]})}{\log t}$, [a,b] = set E, then the result

of Saxena [3] is a particular case of our theorem.

REFERENCES

- [1] Zygmund A. (1977) "Trigonometric series", Cambridge University Press.
- [2] Saxena Ashok. (1965), "On uniform harmonic summability of Fourier series and its conjugate series", *Proc. Nat. Inst. Sci. India* part A, 31 : 303-310.
- [3] Saxena Ashok (1966) "On uniform Norlund summability of Fourier series", *Proc. Nat. Inst. Sci. India*, part A, 32 : 502-508.
- [4] Titchmarsh E. C. (1939) "Theory of Functions", second edition, Oxford Press.
- [5] Siddiqi J. A.(1948), "On the harmonic summability of Fourier series", *Proc. Indian Acad. Sci.*, Sect.A, 28 : 527-531.
- [6] Töeplitz O. (1913), "Überallagemeiene lineare Mittel bildunger", *P.M.F.* 22 : 113-119.
- [7] Pati T. (1961), "A generalization of a theorem of Iyenger on harmonic summability of Fourier series", *Indian J. Math.* 3 : 85 90.
- [8] Singh T. (1963), "On Nörlund summability of Fourier series and its conjugate series", *Proc. Nat. Inst. Sci. India* part A, 29 : 65-73.