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1. DEFINITIONS AND NOTATIONS 

 

           Let )(xf  be a periodic function with period 2 and integrable in the sense of 

Lebesgue over the interval ],[  .The Fourier series associated with this function is 
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where nn baa , ,0  are known as Fourier trigonometric coefficients of  xf )( and are 

given by : 
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 Let 
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n xu be an infinite series defined in ],[],[ ba . The 
thn partial 

sum of the series 
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 Let )( n,ka T   be an infinite lower triangular matrix satisfying Silverman-

Töeplitz [6] conditions of regularity i.e. 
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   where M  is finite constant. 

 

If there exists a bounded function )(xS  such that  
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uniformly ],[ bax  then we say that the series 
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n xu  is summable (T) 

uniformly in bxa   to the sum )(xS . 

 

Particular Cases. The important particular cases of the triangular matrix means are: 
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(v) Nörlund means [1919] when 
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We write    )(2)()()( xStxftxft  ,               (1.3) 
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2. INTRODUCTION 

Siddiqi [5] proved the following theorem: 

 

TheoremA. If           

                                     Φ(t) 
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as 0t , then the series (1.1), at xt   is summable (H) to )(xf . 

 Singh [8] generalized the above theorem for ),( npN summability in the 

following form: 

 

TheoremB. Under the condition (2.1), the Fourier series of )(tf , at xt  , is 

summable ),( npN to )(xf , where  np  is non-negative, non-increasing sequence 

such that  
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where 1  is a fixed positive integer.  

Continuing the study for ),( npN summability, Pati [7] has proved the 

following therem: 

 

TheoremC. If ),( npN be a regular Nörlund method, defined by a real, non-negative, 

monotonic, non-increasing sequence of the coefficient np  such that nP , and 

)(log nPOn   as n  then if  
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as 0t , the Fourier series of )(tf , at xt   is summable ),( npN to )(xf . 

Dealing with uniform summability method, Saxena [2] established the 

following theorem: 
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TheoremD: If                      Φ(t) 
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uniformly in a set E in which )(xSS   is bounded, as 0t , then the series (1.1) 

is summable by Harmonic means uniformly in E to the sum S . 

 

Saxena [3] generalizes above theorem for uniform Nörlund summability 

method in the following form: 

 

TheoremE: If )(t stands for a function of t and )(t ultimately increase steadily 

with t , 
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uniformly in E in which )(xSS   is bounded, as 0t , then the series (1.1) is 

summable ),( npN uniformly in E to the sum S . 

 

3. MAIN THEOREM. 

 

Quite a good amount of works are known for uniform harmonic as well as Nörlund 

summability of Fourier series. In this paper, a more general result than those of 

Siddiqi [5], Saxena [2, 3],   Pati [7], and Singh [8] has been established so that their 

results come out as particular cases. 

 

Theorem. Let )( n,ka T   be an infinite triangular matrix such that the elements 

)( n,ka  are non-negative and non-decreasing with nk   such 

that 
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uniformly in a set E = ],[ ba  in which S(x) is bounded, as 0t , where )(t  is a 

positive, monotonic increasing function of  t such that  
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 as n , for 10  ,then the Fourier series (1.1) is lower matrix summable (T) 

uniformly in E = ],[ ba  to the sum S(x). 
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4. LEMMAS.  

 

We shall require the following lemmas for the proof of our theorem- 

Lemma4.1. Let )(tKn  be given by (1.7) then )()( nOtKn  , 
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Proof:    
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kna ,

 is non-negative and non-decreasing with nk   and )(tKn  is 

given by (1.7) then 









t

A
OtK

n

n

,
)(  for   t

n

1
0 . 

Proof: Since for   t
n

1
0 , 



t
t sin , 

We have   





n

k
tknn

tk
atK

0 2

2
1

,
sin

)sin(

2

1
)(


 

                            







 



tka
n

k

knt
)sin(

sin2

1
2
1

0

,

2


 

                             )(
2

.
2

1
,




nAO

t
    from lemma (4.2) 

        









t

A
OtK

n

n

,
)( . 

Hence the lemma is proved. 

 

 

5. PROOF OF THE MAIN THEOREM. 
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By Riemann Lebesgue theorem and regularity conditions we get )1(3 oI  . 
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by mean value theorem for integrals 

        )1(o   as n , by condition (3.2) 

which completes the proof of the main theorem.  
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