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Abstract. In this present paper the self similar model of  exponential  spherical, cylindrical 

and plane shock wave is studied, taking magnetic radiative heat flux into account where total 

energy of the wave is variable and atmosphere is uniform. 
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1. INTRODUCTION 

 

               Wang [1], Koch [2], Helliwell [3], Ray and Banerjee [4] and others have 

investigated the propagation of plane shock waves in optically thick and thin limit 

cases of gas in detail. Gusev. [5], Ranga Rao and Ramana [6] have studied the 

problem of unsteady self similar motion of a gas displaced by a piston, according to 

an exponential law. Verma and Singh [7] and Singh and Srivastava [8] have 

considered the problems of spherical shock waves in an exponentially increasing 

medium under the law uniform pressure, Srivastava [9] has studied the problem of 

magnetoradiative shock. 

In the present paper we discussed the strong  exponential spherical, cylindrical 

and plane shock waves in a uniform atmosphere with magnetic radiative effects the 

similarity solution have been developed when radiation heat is more important than 

the radiation pressure and radiation energy and opaque the shock to be transparent and 

isothermal. The total energy of waves as cube of shock radius.  

 

2. EQUATION OF MOTION GOVERNING FLOW 

 

The equation of flow behind a spherical, cylindrical and plane shock wave 

where j =0, 1,2 corresponding to plane, cylindrical & spherical and v = 0 for plane and 

v =1 for cylindrical , spherical both 
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where u, ,  p T, E, F and h are the velocity, density, pressure, temperature, energy, 

magnetic field, heat flux. 

 Assuming local thermodynamics equilibrium and taking Rosselland’s 

diffusion approximation. 
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 where 
 
  c the velocity of light,   the mean flow path of radiation is a function 

of density and temperature. Following wang (1966), we take 

 

               0 T  ,       (2.8) 

             0 ,  are being constant. 

 

 The inner expanding surface moves with time according to all exponential 

law. 

 

 r A mt m exp ( ) ( )0       (2.9) 

 

and since we have assumed self similarity. The shock will also move with time 

according to an exponential constants. 

 

3. BOUNDARY CONDITION 

 

The disturbance is headed by an isothermal shock, therefore the boundary 

condition are 
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where subscripts 0 and 1 denote the regions immediately ahead and behind the shock 

front, respectively and v is the shock velocity,M denotes the mach number. 

 

4. SIMILARITY SOLUTION 

  

The similarity transformation for the problem under consideration are  
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the variable  assumes the value 1 at the shock and  on the inner expanding surface. 

This enables us to express the radius of the inner expanding surface. 

 

            r R  .                   (4.7) 

Now using the equation (2.6), (2.8) and (4.3)-(4.5), (4.7) into the equation 

(2.7)  
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with    2, remaining arbitrary ( , )0 2   and 
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( ) a dimensions radiation parameters .   (4.9)  

 

Making use of the equation (4.1) - (4.6), the equation (2.1) – (2.5) are transformed 

into 
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Where primes denotes differentiation with respect to  . The appropriate transformed 

shock conditions are. 
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 5. NUMERICAL RESULT 

 

                  For exhibiting the numerical solutions, it is convenient to write the flow 

variables in the non dimensional forms as  
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6. CONCLUSION 

 

             The numerical integration was carried out through using software matlab, 

for certain choice of parameter and reproduced in graphical form and nature of field 

variables is illustrated through them. We have calculated our result for following data. 

25.0,01.1,4.1 2   M . 

  At the shock surface pressure, density and magnetic field are maximum & 
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decrease as we move away from the shock surface where as velocity is minimum at 

the shock surface and increase as we move away from shock surface. We also see that 

variation in variable is more rapidly in spherical shock wave in comparison for 

cylindrical shock waves. 
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