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Abstract: It is very interesting and difficult to understand the papers of the great 

mathematician Prof. Harish-Chandra (1923-1983). While reading any one of them the 

reader is compelled to know the answers of many questions standing on the way. We 

have tried to understand his paper
1
 and found that the Jacobi polynomial appears on the 

way of solution of wave equation of electron moving in the field of a magnetic pole. 

This Jacobi polynomial is not in the usual form appearing in mathematical literature. In 

this paper we have compared the Jacobi polynomial used by Harish-Chandra with its 

usual form. We have also deduced the explicit form for such polynomials from identity 

given in his paper
1
 . We have also verified the results found by him concerning Jacobi 

polynomials. 
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1. INTRODUCTION 

 

                 In his paper
1
 Prof. Harish-Chandra obtained the suitable Hamiltonian H  for 

the motion of electron in the field of a magnetic pole and reduced the problem to find the 

wave function   satisfying the wave equation 

(1.1)                                                      H E  , 

where E  is some eigenvalue of H . The spherical polar coordinate system is suitable for 

the problem and therefore using the transformation laws of tensor analysis he converted 

(1.1) to the following form 

 

(1.2)       31

1 3

1 1
1 cos

sin 2

n
M

i r r r


  

 

      
        

    
 

                                                                                  3

3 0cos 0
2

E


   
 

    
   

. 

Where he has written
3 2

1 1

2 2

0

i M i

e
   

 

 
  

  , to make the equation free from  , i.e.   
0  is 

a function of r ,   only and   is mass of electron and M  is half an odd integer. The 

two independent sets of Pauli operators
2 ’s and  ’s satisfy the relations 

 

 (1.3)                        
1 2 3 1 2 3

2 , 2

, ,

i j j i ij i j j i ij

i j j i i i

         

         

   


  

             , 1,2,3i j  , 

 

and commute with all other operators involved in the equation (1.2). 
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                 As in paper
1
 Harish-Chandra assumed that   

(1.4)                       

2

2 3 3

1

cos
1 cos

sin 2 2

n
K M

  
 

 

     
        

     
,  

 

because the operator within the curly bracket is purely imaginary. This operator 

commutes with the operator acting on 
0  in (1.2). This fact can be verified in the 

following way. Being the multiple of the operator in the curly bracket in (1.4) by 11

i r


,  

the operator  3 31

1

1
1 cos cos

sin 2 2

n
M

i r

 
  

 

     
       

     
 commutes with 

2K .  Further 2K  clearly commutes with 
3 E   , since 

3  commutes with 
1  and 

3 . By bringing 
1  to the left of first term of the square we may write 2K  as                    

   3 31 1
cot 1 cos cot 1 cos

2 sin 2 2 sin 2

n n
M M

 
   

   

       
            

      
,thi

s makes easier to understood that it commutes with 1 3

1 1

i r r
 
   

  
  

. Thus we find 

that 2K  commutes with the operator of (1.2). Hence 2K  equal to the square of 

operator 

 3 3

1

cos
1 cos

sin 2 2

n
M

  
 

 

   
     

   
. 

Since if two operators commute their eigenvectors are same though their eigenvalues 

may be different. Hence we can choose  
0  to be an eigenvector of 2K . 

 

2. REDUCTION OF THE OPERATOR 2K  TO THE JACOBI OPERATOR 

 

From equation (1.4) 
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                                                                      31
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                                                        3

1 1
sin cos 1 cos

sin 2 2

n
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, 

 

Since   
1 1 cot

sin sin sin



    

 
 

 
  we get            

 

(2.1)      2K =  3

1 1
cot 1 cos

sin 2 2

n
M  

 

   
      

   
 

                                                                 3

1
sin cos 1 cos

2 2

n
M   



   
     

   
. 

              

Now for finding eigenvectors of 2K , he puts cosu  , 2sin 1 u    and 

21
u

u
u u 

   
   

   
. 

 

 First factor of R.H.S. of equation (2.1) 

 

=  3

1 1
cot 1 cos

sin 2 2

n
M  

 

   
     

   
 

=  2 3

2 2 2

1 1
1 1

2 21 1 1

d u n
u M u
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=  2

3 32

1 1
1
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u M u
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, 

 

Also second factor of R.H.S. of equation (2.1) 

 

=  3

1
sin cos 1 cos

2 2

n
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=  2 2

3

1
1 1 1
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d n
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1
1
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. 

 

Now equation (2.1) becomes 

 

2K =  2

3 32
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(2.2)  2K =  21 u
2

2

d

du
2u

d

du  
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2 1

4

n 
 , 

 

where cosu  .  This is the required form of operator 2K . 

 

 

3.  EIGENVALUES AND EIGENFUNCTIONS OF OPERATOR 2K  

 

              In paper
1
 Prof. Harish-Chandra put  

2

n
m M

 
  
 

, 3

2 2

n
j

 
  
 

 

and say that if m , j  are both integral or both half-integral the only eigenfunctions of the 

operator  

(3.1)                                  21 u
2

2

d

du
2u

d

du

 

 

2

21

m ju

u






2j ,     

corresponding to the interval 1 1u    are the Jacobi polynomials , ( )k

m jP u  and 

corresponding eigenvalues are  1k k  , where k  is to be so chosen that k m , j  and 
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k j  is an integer. Prof. Harish-Chandra defined  , cosk

m jP   by nice and beautiful 

identity, which is one of the achievements of paper
1
 is given as  
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Thus from (3.1) we get 
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i.e.                     2K , ( )k

m jP u = ,

1 1
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. 

 

So eigenfunctions of the operator 2K  in the interval 1 1u    are the Jacobi 

polynomials , ( )k

m jP u  and the corresponding eigenvalues are 
1 1

2 2

n n
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since , ( )k

m jP u  is eigenvector, so  
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4.  EXPLICIT FORM OF , ( )k

m jP u  EVALUATED FROM HARISH-CHANDRA 

IDENTITY 

 

             Harish-Chandra Identity (3.2) is a generating relation for Jacobi 

polynomial , ( )k

m jP u . In paper
1
 Prof. Harish-Chandra has not given the explicit form 

of , ( )k

m jP u . In this article we are giving such form of , ( )k

m jP u  from Harish-Chandra 

Identity. Now from Identity (3.2) which can be written as  
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L.H.S. of (4.1) = 
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Compare L.H.S. and R.H.S. of equation (4.1) we get  
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Hence we get  
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  , 

which is an explicit form of  , ( )k

m jP u . 

 

 

5.  JACOBI POLYNOMIAL IN ZEMANIAN
3
 

              

From Zemanian
3
 chapter IX we know that the normalized eigenfunctions of the operator  

 

(5.1)           η =        
1 2 1 22 1w x D x w x D w x
 

       , 

 

where  w x =    1 1x x
 

   and  ,   are real numbers with  > 1 ,  > 1  and 

1 < x <1 are given as  

 

(5.2)                               n x =
     

1 2

,

n

n

w x
P x

h

  
 
 

,          1,2,3,......n   

 

where                                  
   

   

12 1 1

! 2n+ + +1 1
n

n n
h

n n

   

   

       


   
, 

 

and the 
   ,

nP x
 

 are the Jacobi polynomials defined as  

 

(5.3)                                 ,

0

2 1 1
n nn

n m mn

n
m n m

m

P x x x


 







  
    

  
 , 

 

these eigenfunctions  n x  correspond to the eigenvalues  1n n n      .  

Thus we have  

η  n x =
n  n x  
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i.e.                      
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(5.4)           
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                                                                                              1 nn n x       . 

 

So  n x  are the eigenvectors and   1n n       are eigenvalues of the 

differential operator 

 
 

2

2
2
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. 

 

 

6. COMPARISON OF TWO JACOBI POLYNOMIALS USED IN PAPER
1
 AND 

ZEMANIAN
3 

 

                 According to Zemanian
3
 from equation (5.4) put  

 

(6.1)                                   
2

m
  

 
 

,
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,      we get  
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1
n

m jxd d
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                                                                     =    2 1 nn n j x      2
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(6.2)          
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1
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Comparing equation (3.3) and (6.2), with using (4.2), (5.2) and (6.1) we get  
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(6.4)                              
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k
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j m j m n k j

 

 


  

     
  


     

. 

 

Where  n x  be the normalized Jacobi polynomial
3
. 

 

7. CONCLUSION 

 

           We have come to the conclusion that the Jacobi polynomial
1
 , ( )k

m jP u  is infact the 

value of    

1

22
1

2 1

j m

n u
k


  

  
 

 for n k j  , j m    and j m   . This allows 

us to take k  and j  either both integers or both half of odd integers. 
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