A Note on the form of Jacobi Polynomial used in Harish-Chandra's Paper 'Motion of an Electron in the Field of a Magnetic Pole'

Vinod Kumar Yadav

Junior Research Fellow (CSIR), Department of Mathematics, V.S.S.D. (P.G.) College, Kanpur-208002, U.P. (INDIA) E-mail: vinodkumaryadav3@gmail.com

Abstract

It is very interesting and difficult to understand the papers of the great mathematician Prof. Harish-Chandra (1923-1983). While reading any one of them the reader is compelled to know the answers of many questions standing on the way. We have tried to understand his paper ${ }^{1}$ and found that the Jacobi polynomial appears on the way of solution of wave equation of electron moving in the field of a magnetic pole. This Jacobi polynomial is not in the usual form appearing in mathematical literature. In this paper we have compared the Jacobi polynomial used by Harish-Chandra with its usual form. We have also deduced the explicit form for such polynomials from identity given in his paper ${ }^{1}$. We have also verified the results found by him concerning Jacobi polynomials.

Keywords: Wave equation, Jacobi polynomial, Identity, Eigenvalues, Eigenfunctions. 2010 Mathematics Subject Classification Number: 33C45, 47A75.

1. INTRODUCTION

In his paper ${ }^{1}$ Prof. Harish-Chandra obtained the suitable Hamiltonian H for the motion of electron in the field of a magnetic pole and reduced the problem to find the wave function ψ satisfying the wave equation

$$
\begin{equation*}
H \psi=E \psi, \tag{1.1}
\end{equation*}
$$

where E is some eigenvalue of H. The spherical polar coordinate system is suitable for the problem and therefore using the transformation laws of tensor analysis he converted (1.1) to the following form

$$
\begin{align*}
\frac{1}{i} \rho_{1}\left\{\sigma_{3}\left(\frac{\partial}{\partial r}+\frac{1}{r}\right)+\frac{\sigma_{1}}{r}\left(\frac{\partial}{\partial \theta}-\frac{\sigma_{3}}{\sin \theta}\{M+\right.\right. & \frac{n}{2}(1-\cos \theta) \tag{1.2}\\
& \left.\left.\left.\left.\left.-\frac{\sigma_{3}}{2} \cos \theta\right\}\right)\right\}+\rho_{3} \mu+E\right]\right] \psi_{0}=0
\end{align*}
$$

Where he has written $\psi=e^{i\left(M-\frac{1}{2} \sigma_{3}\right) \phi-\frac{1}{2} i \sigma_{2} \theta} \psi_{0}$, to make the equation free from ϕ, i.e. ψ_{0} is a function of r, θ only and μ is mass of electron and M is half an odd integer. The two independent sets of Pauli operators ${ }^{2} \sigma$'s and ρ 's satisfy the relations

$$
\left\{\begin{array}{l}
\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=2 \delta_{i j}, \rho_{i} \rho_{j}+\rho_{j} \rho_{i}=2 \delta_{i j} \tag{1.3}\\
\sigma_{i} \rho_{j}=\rho_{j} \sigma_{i}, \sigma_{1} \sigma_{2} \sigma_{3}=i, \rho_{1} \rho_{2} \rho_{3}=i
\end{array} \quad(i, j=1,2,3),\right.
$$

and commute with all other operators involved in the equation (1.2).

As in paper ${ }^{1}$ Harish-Chandra assumed that

$$
-K^{2}=\left\{\sigma_{1}\left[\frac{\partial}{\partial \theta}-\frac{\sigma_{3}}{\sin \theta}\left(M+\frac{n}{2}(1-\cos \theta)-\frac{\sigma_{3} \cos \theta}{2}\right)\right]\right\}^{2},
$$

because the operator within the curly bracket is purely imaginary. This operator commutes with the operator acting on ψ_{0} in (1.2). This fact can be verified in the following way. Being the multiple of the operator in the curly bracket in (1.4) by $\frac{1}{i} \frac{\rho_{1}}{r}$, the operator $\frac{1}{i} \rho_{1}\left\{\frac{\sigma_{1}}{r}\left(\frac{\partial}{\partial \theta}-\frac{\sigma_{3}}{\sin \theta}\left\{M+\frac{n}{2}(1-\cos \theta)-\frac{\sigma_{3}}{2} \cos \theta\right\}\right)\right\}$ commutes with $-K^{2}$. Further $-K^{2}$ clearly commutes with $\rho_{3} \mu+E$, since ρ_{3} commutes with σ_{1} and σ_{3}. By bringing σ_{1} to the left of first term of the square we may write $-K^{2}$ as $\left\{\frac{\partial}{\partial \theta}+\frac{1}{2} \cot \theta+\frac{\sigma_{3}}{\sin \theta}\left(M+\frac{n}{2}(1-\cos \theta)\right)\right\}\left\{\frac{\partial}{\partial \theta}+\frac{1}{2} \cot \theta-\frac{\sigma_{3}}{\sin \theta}\left(M+\frac{n}{2}(1-\cos \theta)\right)\right\}$, thi s makes easier to understood that it commutes with $\frac{1}{i} \rho_{1}\left(\sigma_{3}\left(\frac{\partial}{\partial r}+\frac{1}{r}\right)\right)$. Thus we find that $-K^{2}$ commutes with the operator of (1.2). Hence $-K^{2}$ equal to the square of operator

$$
\sigma_{1}\left[\frac{\partial}{\partial \theta}-\frac{\sigma_{3}}{\sin \theta}\left(M+\frac{n}{2}(1-\cos \theta)-\frac{\sigma_{3} \cos \theta}{2}\right)\right] .
$$

Since if two operators commute their eigenvectors are same though their eigenvalues may be different. Hence we can choose ψ_{0} to be an eigenvector of $-K^{2}$.

2. REDUCTION OF THE OPERATOR $-K^{2}$ TO THE JACOBI OPERATOR

From equation (1.4)

$$
\begin{aligned}
-K^{2} & =\left\{\sigma_{1}\left[\frac{\partial}{\partial \theta}-\frac{\sigma_{3}}{\sin \theta}\left(M+\frac{n}{2}(1-\cos \theta)-\frac{\sigma_{3} \cos \theta}{2}\right)\right]\right\}^{2} \\
& =\left\{\sigma_{1}\left[\frac{\partial}{\partial \theta}+\frac{1}{2} \cot \theta-\frac{\sigma_{3}}{\sin \theta}\left(M+\frac{n}{2}(1-\cos \theta)\right)\right] \sigma_{1}\right\} \times \\
& \left\{\frac{\partial}{\partial \theta}+\frac{1}{2} \cot \theta-\frac{\sigma_{3}}{\sin \theta}\left(M+\frac{n}{2}(1-\cos \theta)\right)\right\} \\
& =\left\{\sigma_{1}^{2}\left[\frac{\partial}{\partial \theta}+\frac{1}{2} \cot \theta+\frac{\sigma_{3}}{\sin \theta}\left(M+\frac{n}{2}(1-\cos \theta)\right)\right]\right\} \times \\
& =\left\{\frac{\partial}{\partial \theta}+\frac{1}{2} \cot \theta-\frac{\sigma_{3}}{\sin \theta}\left(M+\frac{n}{2}(1-\cos \theta)\right)\right\} \\
2 & \left.\cot \theta+\frac{\sigma_{3}}{\sin \theta}\left(M+\frac{n}{2}(1-\cos \theta)\right)\right\} \times
\end{aligned}
$$

$$
\frac{1}{\sin \theta}\left\{\sin \theta \frac{\partial}{\partial \theta}+\frac{1}{2} \cos \theta-\sigma_{3}\left(M+\frac{n}{2}(1-\cos \theta)\right)\right\}
$$

Since $\frac{\partial}{\partial \theta} \frac{1}{\sin \theta}=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}-\frac{\cot \theta}{\sin \theta}$ we get

$$
\begin{align*}
-K^{2}=\frac{1}{\sin \theta}\left\{\frac{\partial}{\partial \theta}-\frac{1}{2} \cot \theta+\sigma_{3}\right. & \left.\left(M+\frac{n}{2}(1-\cos \theta)\right)\right\} \times \tag{2.1}\\
& \left\{\sin \theta \frac{\partial}{\partial \theta}+\frac{1}{2} \cos \theta-\sigma_{3}\left(M+\frac{n}{2}(1-\cos \theta)\right)\right\}
\end{align*}
$$

Now for finding eigenvectors of $-K^{2}$, he puts $u=\cos \theta, \sin \theta=\sqrt{1-u^{2}}$ and $\frac{\partial}{\partial \theta}=\frac{\partial u}{\partial \theta} \frac{\partial}{\partial u}=-\sqrt{1-u^{2}} \frac{\partial}{\partial u}$.
\therefore First factor of R.H.S. of equation (2.1)

$$
\begin{aligned}
& =\frac{1}{\sin \theta}\left\{\frac{\partial}{\partial \theta}-\frac{1}{2} \cot \theta+\sigma_{3}\left(M+\frac{n}{2}(1-\cos \theta)\right)\right\} \\
& =\frac{1}{\sqrt{1-u^{2}}}\left\{-\sqrt{1-u^{2}} \frac{d}{d u}-\frac{1}{2} \frac{u}{\sqrt{1-u^{2}}}+\frac{\sigma_{3}}{\sqrt{1-u^{2}}}\left(M+\frac{n}{2}(1-u)\right)\right\} \\
& =-\frac{1}{1-u^{2}}\left\{\left(1-u^{2}\right) \frac{d}{d u}-\sigma_{3}\left(M+\frac{n}{2}\right)+\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right) u\right\}
\end{aligned}
$$

Also second factor of R.H.S. of equation (2.1)

$$
\begin{aligned}
& =\left\{\sin \theta \frac{\partial}{\partial \theta}+\frac{1}{2} \cos \theta-\sigma_{3}\left(M+\frac{n}{2}(1-\cos \theta)\right)\right\} \\
& =\left\{\sqrt{1-u^{2}}\left(-\sqrt{1-u^{2}} \frac{d}{d u}\right)+\frac{1}{2} u-\sigma_{3}\left(M+\frac{n}{2}(1-u)\right)\right\} \\
& =-\left\{\left(1-u^{2}\right) \frac{d}{d u}+\sigma_{3}\left(M+\frac{n}{2}\right)-\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right) u\right\} .
\end{aligned}
$$

Now equation (2.1) becomes

$$
\begin{aligned}
& -K^{2}=-\frac{1}{1-u^{2}}\left\{\left(1-u^{2}\right) \frac{d}{d u}-\sigma_{3}\left(M+\frac{n}{2}\right)+\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right) u\right\} \times \\
& (-1)\left\{\left(1-u^{2}\right) \frac{d}{d u}+\sigma_{3}\left(M+\frac{n}{2}\right)-\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right) u\right\} \\
& =\frac{1}{1-u^{2}}\left\{(1 - u ^ { 2 }) \left[\left(1-u^{2}\right) \frac{d^{2}}{d u^{2}}+(-2 u) \frac{d}{d u}+\sigma_{3}\left(M+\frac{n}{2}\right) \frac{d}{d u}-\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right)\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right) u \frac{d}{d u}\right]-\sigma_{3}\left(M+\frac{n}{2}\right)\left(1-u^{2}\right) \frac{d}{d u}-\sigma_{3}^{2}\left(M+\frac{n}{2}\right)^{2} \\
& +\sigma_{3}\left(M+\frac{n}{2}\right)\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right) u+\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right) u\left(1-u^{2}\right) \frac{d}{d u} \\
& \left.+\sigma_{3}\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right)\left(M+\frac{n}{2}\right) u-\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right)^{2} u^{2}\right\} \\
& =\left(1-u^{2}\right) \frac{d^{2}}{d u^{2}}-2 u \frac{d}{d u}-\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right) \\
& -\frac{\left\{\sigma_{3}^{2}\left(M+\frac{n}{2}\right)^{2}-2 \sigma_{3}\left(M+\frac{n}{2}\right)\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right) u+\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right)^{2} u^{2}\right\}}{\left(1-u^{2}\right)} \\
& =\left(1-u^{2}\right) \frac{d^{2}}{d u^{2}}-2 u \frac{d}{d u}-\frac{\left\{\sigma_{3}\left(M+\frac{n}{2}\right)-\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right) u\right\}^{2}}{\left(1-u^{2}\right)}-\left(\frac{n}{2} \sigma_{3}+\frac{1}{2}\right) \\
& =\left(1-u^{2}\right) \frac{d^{2}}{d u^{2}}-2 u \frac{d}{d u}-\frac{\sigma_{3}^{2}\left\{\left(M+\frac{n}{2}\right)-\left(\frac{n}{2}+\frac{\sigma_{3}}{2}\right) u\right\}^{2}}{\left(1-u^{2}\right)}-\sigma_{3}^{2}\left(\frac{n}{2}+\frac{\sigma_{3}}{2}\right)^{2}+\frac{n^{2}}{4}-\frac{1}{4} \\
& \text { (2.2) }-K^{2}=\left(1-u^{2}\right) \frac{d^{2}}{d u^{2}}-2 u \frac{d}{d u}-\frac{\left\{\left(M+\frac{n}{2}\right)-\left(\frac{n}{2}+\frac{\sigma_{3}}{2}\right) u\right\}^{2}}{\left(1-u^{2}\right)}-\left(\frac{n}{2}+\frac{\sigma_{3}}{2}\right)^{2}+\frac{n^{2}-1}{4} \text {, }
\end{aligned}
$$

where $u=\cos \theta$. This is the required form of operator $-K^{2}$.

3. EIGENVALUES AND EIGENFUNCTIONS OF OPERATOR $-K^{2}$

In paper ${ }^{1}$ Prof. Harish-Chandra put $m=\left(M+\frac{n}{2}\right), j=\left(\frac{n}{2}+\frac{\sigma_{3}}{2}\right)$
and say that if m, j are both integral or both half-integral the only eigenfunctions of the operator

$$
\begin{equation*}
\left(1-u^{2}\right) \frac{d^{2}}{d u^{2}}-2 u \frac{d}{d u}-\frac{\{m-j u\}^{2}}{\left(1-u^{2}\right)}-j^{2}, \tag{3.1}
\end{equation*}
$$

corresponding to the interval $-1 \leq u \leq 1$ are the Jacobi polynomials $P_{m, j}^{k}(u)$ and corresponding eigenvalues are $-k(k+1)$, where k is to be so chosen that $k \geq|m|,|j|$ and
$k-j$ is an integer. Prof. Harish-Chandra defined $P_{m, j}^{k}(\cos \theta)$ by nice and beautiful identity, which is one of the achievements of paper ${ }^{1}$ is given as

$$
\begin{align*}
& \frac{\left(t_{1} \cos \frac{\theta}{2}+t_{2} \sin \frac{\theta}{2}\right)^{k-j}\left(-t_{1} \sin \frac{\theta}{2}+t_{2} \cos \frac{\theta}{2}\right)^{k+j}}{\{(k-j)!(k+j)!\}^{\frac{1}{2}}} \tag{3.2}\\
&=\sum_{m=k}^{-k} \frac{t_{1}^{k-m} t_{2}^{k+m}}{\{(k-m)!(k+m)!\}^{\frac{1}{2}}} P_{m, j}^{k}(\cos \theta) .
\end{align*}
$$

Thus from (3.1) we get

$$
\begin{array}{r}
\left\{\left(1-u^{2}\right) \frac{d^{2}}{d u^{2}}-2 u \frac{d}{d u}-\frac{\{m-j u\}^{2}}{\left(1-u^{2}\right)}-j^{2}\right\} P_{m, j}^{k}(u)=-k(k+1) P_{m, j}^{k}(u) \tag{3.3}\\
\left\{\left(1-u^{2}\right) \frac{d^{2}}{d u^{2}}-2 u \frac{d}{d u}-\frac{\{m-j u\}^{2}}{\left(1-u^{2}\right)}-j^{2}+\frac{n^{2}-1}{4}\right\} P_{m, j}^{k}(u) \\
=\left\{-k(k+1)+\frac{n^{2}-1}{4}\right\} P_{m, j}^{k}(u)
\end{array}
$$

i.e. $\quad-K^{2} P_{m, j}^{k}(u)=-\left\{\left(k+\frac{n+1}{2}\right)\left(k-\frac{n-1}{2}\right)\right\} P_{m, j}^{k}(u)$.

So eigenfunctions of the operator $-K^{2}$ in the interval $-1 \leq u \leq 1$ are the Jacobi polynomials $P_{m, j}^{k}(u)$ and the corresponding eigenvalues are $-\left\{\left(k+\frac{n+1}{2}\right)\left(k-\frac{n-1}{2}\right)\right\}$.

Also

$$
K^{2} P_{m, j}^{k}(u)=\left\{\left(k+\frac{n+1}{2}\right)\left(k-\frac{n-1}{2}\right)\right\} P_{m, j}^{k}(u)
$$

i.e.

$$
\left\{K^{2}-\left(k+\frac{n+1}{2}\right)\left(k-\frac{n-1}{2}\right)\right\} P_{m, j}^{k}(u)=0,
$$

since $P_{m, j}^{k}(u)$ is eigenvector, so

$$
\begin{aligned}
& \left\{K^{2}-\left(k+\frac{n+1}{2}\right)\left(k-\frac{n-1}{2}\right)\right\}=0 \\
& K=\left\{\left(k+\frac{n+1}{2}\right)\left(k-\frac{n-1}{2}\right)\right\}^{\frac{1}{2}} .
\end{aligned}
$$

4. EXPLICIT FORM OF $P_{m, j}^{k}(u)$ EVALUATED FROM HARISH-CHANDRA IDENTITY

Harish-Chandra Identity (3.2) is a generating relation for Jacobi polynomial $P_{m, j}^{k}(u)$. In paper ${ }^{1}$ Prof. Harish-Chandra has not given the explicit form of $P_{m, j}^{k}(u)$. In this article we are giving such form of $P_{m, j}^{k}(u)$ from Harish-Chandra Identity. Now from Identity (3.2) which can be written as

$$
\begin{align*}
& \frac{\left(t_{2} \sin \frac{\theta}{2}+t_{1} \cos \frac{\theta}{2}\right)^{k-j}\left(t_{2} \cos \frac{\theta}{2}-t_{1} \sin \frac{\theta}{2}\right)^{k+j}}{\{(k-j)!(k+j)!\}^{\frac{1}{2}}} \tag{4.1}\\
& =\sum_{m=k}^{-k} \frac{t_{1}^{k-m} t_{2}^{k+m}}{\{(k-m)!(k+m)!\}^{\frac{1}{2}}} P_{m, j}^{k}(\cos \theta)
\end{align*}
$$

L.H.S. of $(4.1)=\frac{\left(t_{2} \sin \frac{\theta}{2}+t_{1} \cos \frac{\theta}{2}\right)^{k-j}\left(t_{2} \cos \frac{\theta}{2}-t_{1} \sin \frac{\theta}{2}\right)^{k+j}}{\{(k-j)!(k+j)!\}^{\frac{1}{2}}}$

$$
\begin{aligned}
& =\frac{1}{\{(k-j)!(k+j)!\}^{\frac{1}{2}}}\left\{\sum_{r=0}^{k-j}\binom{k-j}{r}\left(t_{2} \sin \frac{\theta}{2}\right)^{k-j-r}\left(t_{1} \cos \frac{\theta}{2}\right)^{r} \times\right. \\
& \left.\sum_{s=0}^{k+j}\binom{k+j}{s}\left(t_{2} \cos \frac{\theta}{2}\right)^{k+j-s}\left(-t_{1} \sin \frac{\theta}{2}\right)^{s}\right\} \\
& =\frac{1}{\{(k-j)!(k+j)!\}^{\frac{1}{2}}}\left\{\sum_{r=0}^{k-j} \sum_{s=0}^{k+j}\binom{k-j}{r}\binom{k+j}{s} t_{1}^{r+s} t_{2}^{2 k-(r+s)} \times\right. \\
& \left.\left(\cos \frac{\theta}{2}\right)^{r+k+j-s}\left(\sin \frac{\theta}{2}\right)^{k-j-r+s}(-1)^{s}\right\},
\end{aligned}
$$

put $r+s=k-m$ and $\cos \frac{\theta}{2}=\left(\frac{1+\cos \theta}{2}\right)^{\frac{1}{2}}, \sin \theta=\left(\frac{1-\cos \theta}{2}\right)^{\frac{1}{2}}$.

$$
\begin{aligned}
& \text { L.H.S. of }(4.1)=\frac{1}{\{(k-j)!(k+j)!\}^{\frac{1}{2}}}\left\{2^{-k} \sum_{m=k}^{-k} \sum_{r=0}^{k-j}\binom{k-j}{r}\binom{k+j}{k-m-r}(-1)^{k-m-r} t_{1}^{k-m} t_{2}^{k+m} \times\right. \\
& \left.(1+\cos \theta)^{r+\frac{(j+m)}{2}}(1-\cos \theta)^{k-r-\frac{(j+m)}{2}}\right\} \\
& =\sum_{m=k}^{-k} \frac{t_{1}^{k-m} t_{2}^{k+m}}{\{(k-m)!(k+m)!\}^{\frac{1}{2}}} 2^{-k}\left\{\sum_{r=0}^{k-j} \frac{\{(k-m)!(k+m)!\}^{\frac{1}{2}}}{\{(k-j)!(k+j)!\}^{\frac{1}{2}}} \begin{array}{c}
k-j \\
r
\end{array}\right)\binom{k+j}{k-m-r} \times
\end{aligned}
$$

$$
\left.(-1)^{k-m-r}(1+\cos \theta)^{r+\frac{(j+m)}{2}}(1-\cos \theta)^{k-r-\frac{(j+m)}{2}}\right\}
$$

Compare L.H.S. and R.H.S. of equation (4.1) we get

$$
\begin{aligned}
& P_{m, j}^{k}(\cos \theta)=2^{-k} \sum_{r=0}^{k-j} \frac{\{(k-m)!(k+m)!\}^{\frac{1}{2}}}{\{(k-j)!(k+j)!\}^{\frac{1}{2}}}\binom{k-j}{r}\binom{k+j}{k-m-r}(-1)^{k-m-r} \times \\
&(1+\cos \theta)^{r+\frac{(j+m)}{2}}(1-\cos \theta)^{k-r-\frac{(j+m)}{2}} .
\end{aligned}
$$

Hence we get

$$
\begin{align*}
\left.P_{m, j}^{k}(u)=2^{-k} \sum_{r=0}^{k-j} \frac{\{(k-m)!(k+m)!\}^{\frac{1}{2}}}{\{(k-j)!(k+j)!\}^{\frac{1}{2}}} \begin{array}{c}
k-j \\
r
\end{array}\right)\binom{k+j}{k-m-r}(-1)^{k-m-r} \times \tag{4.2}\\
(1+u)^{r+\frac{(j+m)}{2}}(1-u)^{k-r-\frac{(j+m)}{2}},
\end{align*}
$$

which is an explicit form of $P_{m, j}^{k}(u)$.

5. JACOBI POLYNOMIAL IN ZEMANIAN ${ }^{3}$

From Zemanian ${ }^{3}$ chapter IX we know that the normalized eigenfunctions of the operator

$$
\begin{equation*}
\eta=[w(x)]^{-1 / 2} D\left(x^{2}-1\right) w(x) D[w(x)]^{-1 / 2}, \tag{5.1}
\end{equation*}
$$

where $w(x)=(1-x)^{\alpha}(1+x)^{\beta}$ and α, β are real numbers with $\alpha>-1, \beta>-1$ and $-1<x<1$ are given as
where

$$
\begin{equation*}
\psi_{n}(x)=\left[\frac{w(x)}{h_{n}}\right]^{1 / 2} P_{n}^{(\alpha, \beta)}(x), \quad n=1,2,3, \ldots \ldots . \tag{5.2}
\end{equation*}
$$

$$
h_{n}=\frac{2^{\alpha+\beta+1} \Gamma(n+\alpha+1) \Gamma(n+\beta+1)}{n!(2 \mathrm{n}+\alpha+\beta+1) \Gamma(n+\alpha+\beta+1)}
$$

and the $P_{n}^{(\alpha, \beta)}(x)$ are the Jacobi polynomials defined as

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(x)=2^{-n} \sum_{m=0}^{n}\binom{n+\alpha}{m}\binom{n+\beta}{n-m}(x-1)^{n-m}(x+1)^{m}, \tag{5.3}
\end{equation*}
$$

these eigenfunctions $\psi_{n}(x)$ correspond to the eigenvalues $\lambda_{n}=n(n+\alpha+\beta+1)$.
Thus we have

$$
\eta \psi_{n}(x)=\lambda_{n} \psi_{n}(x)
$$

i.e. $\quad\left\{[w(x)]^{-1 / 2} D\left(x^{2}-1\right) w(x) D[w(x)]^{-1 / 2}\right\} \psi_{n}(x)=\{n(n+\alpha+\beta+1)\} \psi_{n}(x)$
i.e. $\quad(1-x)^{-\alpha / 2}(1+x)^{-\beta / 2} D\left\{\left(x^{2}-1\right)(1-x)^{\alpha}(1+x)^{\beta} D\left\{(1-x)^{-\alpha / 2}\right.\right.$

$$
\left.\left.(1+x)^{-\beta / 2} \psi_{n}(x)\right\}\right\}=\{n(n+\alpha+\beta+1)\} \psi_{n}(x)
$$

i.e. $\quad-(1-x)^{-\alpha / 2}(1+x)^{-\beta / 2} D\left\{\frac{1}{2}(\alpha-\beta+\alpha x+\beta x)(1-x)^{\alpha / 2}(1+x)^{\beta / 2} \psi_{n}(x)\right.$

$$
\left.(1-x)^{\frac{\alpha}{2}+1}(1+x)^{\frac{\beta}{2}+1} \psi_{n}^{\prime}(x)\right\}=\{n(n+\alpha+\beta+1)\} \psi_{n}(x)
$$

i.e. $\quad-\left\{\left(1-x^{2}\right) \psi_{n}^{\prime \prime}(x)-2 x \psi_{n}^{\prime}(x)+\left(\frac{\beta+\alpha}{2}\right) \psi_{n}(x)\right.$

$$
\left.-\frac{\{(\beta-\alpha)-(\beta+\alpha) x\}^{2}}{4\left(1-x^{2}\right)} \psi_{n}(x)\right\}=\{n(n+\alpha+\beta+1)\} \psi_{n}(x)
$$

$$
\left\{\begin{array}{r}
\left\{\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}}-2 x \frac{d}{d x}-\frac{\left\{\left(\frac{\beta-\alpha}{2}\right)-\left(\frac{\beta+\alpha}{2}\right) x\right\}^{2}}{\left(1-x^{2}\right)}+\left(\frac{\beta+\alpha}{2}\right)\right\} \psi_{n}(x) \tag{5.4}\\
=-\{n(n+\alpha+\beta+1)\} \psi_{n}(x) .
\end{array}\right.
$$

So $\psi_{n}(x)$ are the eigenvectors and $-\{n(n+\alpha+\beta+1)\}$ are eigenvalues of the differential operator

$$
\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}}-2 x \frac{d}{d x}-\frac{\left\{\left(\frac{\beta-\alpha}{2}\right)-\left(\frac{\beta+\alpha}{2}\right) x\right\}^{2}}{\left(1-x^{2}\right)}+\left(\frac{\beta+\alpha}{2}\right)
$$

6. COMPARISON OF TWO JACOBI POLYNOMIALS USED IN PAPER ${ }^{1}$ AND ZEMANIAN ${ }^{3}$

According to Zemanian ${ }^{3}$ from equation (5.4) put

$$
\begin{equation*}
\left(\frac{\beta-\alpha}{2}\right)=m,\left(\frac{\beta+\alpha}{2}\right)=j, \quad \text { we get } \tag{6.1}
\end{equation*}
$$

$$
\left\{\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}}-2 x \frac{d}{d x}-\frac{\{m-j x\}^{2}}{\left(1-x^{2}\right)}+j\right\} \psi_{n}(x)=-n(n+2 j+1) \psi_{n}(x)
$$

$$
\left.\begin{array}{l}
\left\{\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}}-2 x \frac{d}{d x}-\frac{\{m-j x\}^{2}}{\left(1-x^{2}\right)}-j^{2}\right\} \psi_{n}(x) \\
\\
=-n(n+2 j+1) \psi_{n}(x)-\left(j+j^{2}\right) \psi_{n}(x)
\end{array}\right\}
$$

Comparing equation (3.3) and (6.2), with using (4.2), (5.2) and (6.1) we get

$$
\begin{align*}
& \left\{\begin{array}{l}
P_{m, j}^{k}(u)=(-1)^{j-m}\left(\frac{2}{2 k+1}\right)^{\frac{1}{2}} \psi_{n}(x), u=x=\cos \theta, \\
k=n+j, m=\frac{\beta-\alpha}{2}, j=\frac{\beta+\alpha}{2}
\end{array}\right. \tag{6.3}\\
& \left\{\begin{array}{l}
\psi_{n}(x)=(-1)^{j-m}\left(\frac{2 k+1}{2}\right)^{\frac{1}{2}} P_{m, j}^{k}(u), x=u=\cos \theta, \\
\alpha=j-m, \beta=j+m, n=k-j
\end{array}\right.
\end{align*}
$$

Where $\psi_{n}(x)$ be the normalized Jacobi polynomial ${ }^{3}$.

7. CONCLUSION

We have come to the conclusion that the Jacobi polynomial ${ }^{1} P_{m, j}^{k}(u)$ is infact the value of $(-1)^{j-m}\left(\frac{2}{2 k+1}\right)^{\frac{1}{2}} \psi_{n}(u)$ for $n=k-j, \alpha=j-m$ and $\beta=j+m$. This allows us to take k and j either both integers or both half of odd integers.

ACKNOWLEDGEMENT

I am grateful to my supervisor Dr. T. N. Trivedi for guidance and encouragement during the study of this work. I am also thankful to CSIR, New Delhi, India for providing financial support.

REFERENCES

1. Harish-Chandra (1948). "Motion of an Electron in the Field of a Magnetic Pole". Physical Review, 74(8) : 883-887.
2. Dirac, P. A. M. (1958). Relativistic theory of the electron, In : The Principles of Quantum Mechanics, Clarendon Press, Oxford, Fourth edition, p. 253-275.
3. Zemanian, A. H. (1968). Transformations arising from orthonormal series expansions In : Generalized Integral Transformations, Interscience Publishers a division of John Wiley \& Sons, Inc., vol. XVIII, p. 247-285.
